Generalized Kubo relations and conditions for anomalous diffusion: physical insights from a mathematical theorem.

نویسنده

  • Gerald R Kneller
چکیده

The paper describes an approach to anomalous diffusion within the framework of the generalized Langevin equation. Using a Tauberian theorem for Laplace transforms due to Hardy, Littlewood, and Karamata, generalized Kubo relations for the relevant transport coefficients are derived from the asymptotic form of the mean square displacement. In a second step conditions for anomalous diffusion are derived for the asymptotic forms of the velocity autocorrelation function and the associated memory function. Both spatially unconfined and confined diffusion processes are considered. The results are illustrated with semi-analytical examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractality of Deterministic Diffusion in the Nonhyperbolic Climbing Sine Map

The nonlinear climbing sine map is a nonhyperbolic dynamical system exhibiting both normal and anomalous diffusion under variation of a control parameter. We show that on a suitable coarse scale this map generates an oscillating parameter-dependent diffusion coefficient, similarly to hyperbolic maps, whose asymptotic functional form can be understood in terms of simple random walk approximation...

متن کامل

Recurrence Relations for Quotient Moment of Generalized Pareto Distribution Based on Generalized Order Statistics and Characterization

Generalized Pareto distribution play an important role in reliability, extreme value theory, and other branches of applied probability and statistics. This family of distributions includes exponential distribution, Pareto distribution, and Power distribution. In this paper, we established exact expressions and recurrence relations satisfied by the quotient moments of generalized order statistic...

متن کامل

No-go theorem for ergodicity and an Einstein relation.

We provide a simple no-go theorem for ergodicity and the generalized Einstein relation for anomalous diffusion processes. The theorem states that either ergodicity in the sense of equal time and ensemble averaged mean squared displacements (MSD) is broken, and/or the generalized Einstein relation for time averaged diffusivity and mobility is invalid, which is in complete contrast to normal diff...

متن کامل

Fractal properties of anomalous diffusion in intermittent maps.

An intermittent nonlinear map generating subdiffusion is investigated. Computer simulations show that the generalized diffusion coefficient of this map has a fractal, discontinuous dependence on control parameters. An amended continuous time random-walk theory well approximates the coarse behavior of this quantity in terms of a continuous function. This theory also reproduces a full suppression...

متن کامل

Khinchin theorem and anomalous diffusion.

A recent Letter [M. H. Lee, Phys. Rev. Lett. 98, 190601 (2007)] has called attention to the fact that irreversibility is a broader concept than ergodicity, and that therefore the Khinchin theorem [A. I. Khinchin, (Dover, New York, 1949)] may fail in some systems. In this Letter we show that for all ranges of normal and anomalous diffusion described by a generalized Langevin equation the Khinchi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 134 22  شماره 

صفحات  -

تاریخ انتشار 2011